28 June 2019

Kazera Global Investments PLC
Head Office Kazera Global,
Lakeside, Fountain Lane,
St Mellons,
Cardiff CF3 0FB

Suite 9

Dear Sir

RE: PURPLE HAZE PEGMATITE MINERAL RESOURCE ESTIMATE AS AT 28 JUNE 2019

Kazera Global Investments PLC engaged The MSA Group (Pty) Ltd (MSA) to estimate the Mineral Resource for the Purple Haze Pegmatite by interpreting the drillhole and mapping data and incorporating the results into a three-dimensional block model. The project is operated by Namibian Tantalite Investments (NTI), who carried out the exploration work on the property under the guidance of MSA.

The Tantalite Valley Project ("Tantalite Valley" or the "Project") is located in the Richtersveld Subprovince, Southern Namibia, within the larger Namaqua Metamorphic Complex. The project comprises a Mining Licence (ML-77) within which the area is primarily composed of a large ovoid gabbro intrusion (7.1 km by 3.3 km in extent) within paragneisses of the Namaqua Complex (comprising mainly mica schists and quartzites). The gabbro outcrop forms a large dome shaped mountain that rises about 500 m above the surrounding topography.

The tantalum and lithium mineralisation at Tantalite Valley occurs within a number of granitic pegmatites, which are sheet like bodies containing, quartz, feldspar and mica. Two generations of pegmatites occur in this area; however, it is the younger pegmatites that have intruded the mafic dome which belong to the Lithium-Caesium-Tantalum (LCT) family, containing the tantalum and lithium mineralisation of interest to the Project.

Tantalum mineralisation has been known to occur in the area since the 1940's. In 1980, Southern Sphere Mining and Development (Southern Sphere) drilled 168 percussion holes to investigate several pegmatites at Tantalite Valley (Figure 1). These holes were drilled in selective areas near surface and were spaced 10 m apart on sections perpendicular to and on strike where access allowed. Southern Sphere only reported Ta₂O₅ and Nb₂O₅ results and, to MSA's knowledge, no sample material from its drilling campaign is preserved.

Although spodumene, a lithium-bearing mineral, was known to be present in the pegmatites, little was known about its distribution due to a lack of targeted exploration in the past. The ongoing exploration programme by NTI is the first comprehensive mineralogical investigation of the nature and distribution of the tantalite, lepidolite (a lithium bearing mica) and spodumene mineralisation in the pegmatites. NTI commenced exploration at the Tantalite Valley Project in October 2017 and has completed geological mapping, rock-chip sampling (from outcrops and as underground channel-samples), diamond drilling as well as mineral characterisation studies. The historical drillhole samples were not assayed for lithium.
Purple Haze Pegmatite

The Purple Haze pegmatite is the most visibly well-mineralised tantalum-lithium bearing pegmatite at Tantalite Valley and is exposed on a slope parallel with the dip of the pegmatite body. The Purple Haze pegmatite exposure has a characteristic purple colour that indicates the presence of lepidolite, a lithium-bearing mica. Purple Haze is currently not being mined by NTI; however historical small-scale mining from exposures on the dip-slope has taken place.

A mining cut exposed the pegmatite over approximately 60 m of the strike length of the pegmatite outcrop towards the top of the slope, and a second cut was mined from the base of the valley intermittently along a strike length of approximately 50 m. The mining was of limited extent, only penetrating a few metres into the slope. A trench was excavated during historical exploration activities by blasting down the dip-slope. These excavations allowed for detailed mapping of the pegmatite and interpretation of the mineral domains. Several small pits were also excavated into the pegmatite on the dip-slope. Much of the blasted material is stockpiled near the NTI processing plant.

Purple Haze is an LCT complex lepidolite type pegmatite that dips to the south-west at between 30° and 35° and is approximately 10 m thick. Purple Haze has been sampled by drilling and channel sampling over a strike length of approximately 200 m from northeast to southwest and is partially exposed over a dip length of approximately 100 m. The central portions of the pegmatite comprise mainly quartz, lepidolite and minor K-feldspar. Tantalite is concentrated in the central zone of the pegmatite over thicknesses varying from approximately 1 m to 8 m.

Purple Haze Initial Maiden Mineral Resource

The site was visited by Jeremy Witley (MSA’s Head of Mineral Resource Department and the Competent Person for the Mineral Resource estimate) in June 2017 in order to review the historical database, observe the mineralisation in the outcrops and mine workings and plan an initial exploration programme. Michael Cronwright (Principal Consultant at MSA) conducted a site visit to the Tantalite Valley Project from 4 to 11 April 2019. During the site visit, drillhole cores from several holes were inspected in the Tantalite Valley core yard and the pegmatites were examined in mine workings and outcrops.

NTI drilled 11 diamond drillholes spaced approximately 20 m to 46 m apart over the Purple Haze pegmatite (Figure 1 and Figure 2). Diamond drilling was completed using HQ diameter rods from surface through the weathered zone, and NQ-sized drill rods in the fresh rock. Most holes were drilled vertically, although one drillhole DHLP_03 was inclined to the southwest at 65°.

The pegmatite from the drill core was sampled from the hanging wall contact continuously through to the footwall contact. In addition, sampling extended 1 m into the host-rocks adjacent to the pegmatite footwall and hangingwall contacts. Supplementing the drilling data, channel samples were collected from the dip-oriented trench utilising a diamond saw. Two, 5 m long channels were cut into the sidewalls of the historical excavation at the base of the slope. The channels were sampled at 1 m intervals. The samples do not extend from the pegmatite hangingwall to the footwall contact, as the contact between the gabbro and the pegmatite is not exposed.

The cores were cut longitudinally in half on-site at Tantalite Valley. Half core samples of nominal 1 m lengths were taken, but the lengths were varied where it was required to honour geological contacts. The samples, weighing between 3 kg and 4 kg, were submitted to the ALS preparation facility in Swakopmund where the half-core samples were oven dried and crushed to ~2 mm size fraction. A 500 g sub-sample was split from the crushed sample that was then pulverised to produce a pulp with 85% passing through a 75 μm sieve size. A 120 g subsample was split from the pulverised sample for assay. Certified reference material, blank and duplicate samples were inserted into the sample stream at appropriate intervals and then the complete sample batch was couriered to ALS in Vancouver, Canada for chemical analysis. Seven samples originally assayed by ALS were assayed by a secondary laboratory, SGS Laboratories (South Africa), which confirmed the accuracy of the ALS assays.
142 in-situ density measurements were obtained from Purple Haze drill core. The majority of these were completed on fresh pegmatite material by the Archimedes Principle of weighing the unsampled half core in air and water.

The drilling and sampling practices employed by NTI were consistent with normal industry standards and MSA considers that the exploration work conducted by NTI was carried out using appropriate techniques for the style of mineralisation at Tantalite Valley and that the resulting database is suitable for Mineral Resource estimation.

NTI supplied MSA the data for a total of 13 historical percussion drillholes that were completed by Southern Sphere. No historical sample material is preserved on site and the assays cannot be directly verified. However, the results of the NTI drillhole samples completed at Purple Haze compared well with nearby historical percussion drillhole samples.

A geological model of the Purple Haze Pegmatite and the lithium and tantalum mineralisation envelopes within was constructed in Leapfrog Geo (v 4.4.0). The pegmatite model was constructed using the geological logging, both from the historical and current drilling. Historical mapping was also used to guide the model extents. The tantalum mineralisation envelope was constructed based on a threshold of 80 ppm Ta, from both historical and NTI samples. The lithium mineralised envelope was constructed based on a threshold of 300 ppm Li using sample assays from the NTI exploration, and logging of the historical holes where lepidolite was identified - since the historical holes were not assayed for lithium.

The geological model wireframes were imported into Datamine Studio RM (v 1.4.126.0) for block model construction and estimation of grades and density using inverse distance to the power of two. Lithium and tantalum were estimated into four estimation domains (lithium mineralised pegmatite, non-lithium mineralised pegmatite, tantalum mineralised pegmatite and non-tantalum mineralised pegmatite). Due to the undulating nature of the pegmatite and the enclosed mineralisation, dynamic anisotropy was used to align the estimation parameters with the pegmatite contacts.

The Mineral Resource was classified into the Indicated and Inferred categories based on the drillhole spacing, consideration of data quality and continuity of the mineralisation, in accordance with the guidelines of the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code). Most of the drilling occurred along the river valley, which is sub-parallel to the strike of the pegmatite, and thus there is limited understanding of the geology and grade distribution down dip. The block model estimates within 10 m of the close spaced drilling were classified as an Indicated Mineral Resource. Areas where drilling is sparser were classified as Inferred Mineral Resources up to a distance of 25 m from the nearest drillhole or channel sample.

Purple Haze Mineral Resource Statement

The area of the Mineral Resource reported herein comprises the drilled portion of Purple Haze mostly confined to the area exposed on the dip slope and for a limited distance under the adjacent hill. The Mineral Resource is reported in accordance with the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code) as shown in Table 1. The Mineral Resource is considered to have reasonable prospects for eventual economic extraction for a low-cost operation, given the high-grade and that tantalum is readily extracted using gravity separation techniques at the mine plant that is currently processing mineralisation from the nearby Homestead deposit. A lithium only Mineral Resource, comprising mineralisation occurring outside the tantalum Mineral Resource, is also reported (Table 2).
Table 1: Purple Haze Pegmatite Tantalum Mineral Resource as at 28 June 2019

<table>
<thead>
<tr>
<th>Category</th>
<th>Tonnes (Thousands)</th>
<th>Ta₂O₅ (ppm)</th>
<th>Ta₂O₅ kg (Thousands)</th>
<th>Li₂O (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicated</td>
<td>19.4</td>
<td>911</td>
<td>17.7</td>
<td>5,500</td>
</tr>
<tr>
<td>Inferred</td>
<td>58.8</td>
<td>650</td>
<td>38.2</td>
<td>4,300</td>
</tr>
<tr>
<td>Total</td>
<td>78.2</td>
<td>715</td>
<td>55.9</td>
<td>4,600</td>
</tr>
</tbody>
</table>

Notes:
1. All tabulated data have been rounded and as a result minor computational errors may occur.
2. Mineral Resources which are not Ore Reserves have no demonstrated economic viability.
3. The Mineral Resource is reported as 100% of the Mineral Resource for the project.
4. Depleted by the extent of historical mine workings.
5. Mineral Resources were estimated using a threshold of 80 ppm Ta.

Table 2: Purple Haze Pegmatite Lithium Mineral Resource outside of the Tantalite Mineral Resource as at 28 June 2019

<table>
<thead>
<tr>
<th>Category</th>
<th>Tonnes (Thousands)</th>
<th>Ta₂O₅ (ppm)</th>
<th>Ta₂O₅ kg (Thousands)</th>
<th>Li₂O (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicated</td>
<td>11.6</td>
<td>36</td>
<td>0.4</td>
<td>5,900</td>
</tr>
<tr>
<td>Inferred</td>
<td>35.7</td>
<td>35</td>
<td>1.3</td>
<td>6,500</td>
</tr>
<tr>
<td>Total</td>
<td>47.4</td>
<td>36</td>
<td>1.7</td>
<td>6,300</td>
</tr>
</tbody>
</table>

Notes:
1. All tabulated data have been rounded and as a result minor computational errors may occur.
2. Mineral Resources which are not Ore Reserves have no demonstrated economic viability.
3. The Mineral Resource is reported as 100% of the Mineral Resource for the project.
4. Depleted by the extent of historical mine workings.
5. Mineral Resources were estimated using a threshold of 300 ppm Li.

The Mineral Resource estimate was completed under the direction of Mr. J.C. Witley (BSc Hons, MSc (Eng.)) who is a geologist with more than 30 years’ experience in base and precious metals exploration and mining as well as Mineral Resource evaluation and reporting. He is a Principal Resource Consultant for The MSA Group (an independent consulting company), is registered with the South African Council for Natural Scientific Professions (“SACNASP”) and is a Fellow of the Geological Society of South Africa (“GSSA”). Mr. Witley has the appropriate relevant qualifications and experience to be considered a “Competent Person” for the style and type of mineralisation and activity being undertaken as defined by the 2012 Edition of the JORC Code.

On behalf of:

THE MSA GROUP

[Signed]

J.C. Witley Pr. Sci. Nat.
Principal Mineral Resource Consultant
Figure 1
Plan of the drillhole locations at Tantalite Valley and the Initial Purple Haze Tantalum Mineral Resource area
Figure 2
Plan view of the Purple Haze Pegmatite drilling area with recent NTI drillhole collars (yellow) and historical Southern Sphere Mining drillhole collars (blue)
<table>
<thead>
<tr>
<th>Criteria</th>
<th>JORC Code explanation</th>
<th>Commentary</th>
</tr>
</thead>
</table>
| Sampling techniques | • Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.
 • Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.
 • Aspects of the determination of mineralisation that are Material to the Public Report.
 • In cases where ‘industry standard’ work has been done this would be relatively simple (e.g. ‘reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay’). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | • Diamond drilling, producing drill core has been utilised to sample the pegmatite below ground surface. This method is recognised as providing high quality geological information and samples of the subsurface geology.
 • Supplementing the drilling data, channel samples were collected from outcrop at Purple Haze, utilising a diamond saw.
 • The drilling and sampling practices were to normal industry standards.
 • The pegmatite from the drill core has been sampled from the hanging wall contact continuously through to the footwall contact. In addition, sampling extended 1 m into the host-rocks adjacent to the pegmatite footwall and hangingwall contacts.
 • The channel sampling was across the exposed pegmatite. The samples do not extend from the pegmatite to the footwall contact as the contacts are not exposed. However, the width of the targeted central zone of mineralisation was sampled.
 • A programme of quarter core duplicate sampling was carried out early in the programme that demonstrated the nuggety nature of the tantalum mineralisation. This is indicated that larger samples are desirable.
 • The submitted half-core samples typically had a mass of 3 – 4 kg.
 • The historical drilling was percussion drilling, the details of which are unknown. |
| Drilling techniques | • Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | • The drilling was completed using diamond drilling rigs with HQ sized drilling producing cores of 63.5 mm diameter in the more weathered rock near surface and NQ sized drilling producing core of 47.6 mm diameter in the fresh rock. Most holes were drilled vertically downwards and one hole was angled at 65°. All collars were surveyed after completion. The holes have not been surveyed down-the-hole as they are relatively short; 50 m or less.
 • The historical drilling was percussion drilling, the details of which are unknown. |
<table>
<thead>
<tr>
<th>Criteria</th>
<th>JORC Code explanation</th>
<th>Commentary</th>
</tr>
</thead>
</table>
| **Drill sample recovery** | • Method of recording and assessing core and chip sample recoveries and results assessed.
• Measures taken to maximise sample recovery and ensure representative nature of the samples.
• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | • Based upon the high recovery, NTI did not have to implement additional measures to improve sample recovery and the drill core is considered representative and fit for sampling.
• Drill core recovery was >90% in the pegmatite.
• For the vast majority of drilling completed, core recovery was near 100% and there is no sample bias due to preferential loss or gain of fine or coarse material.
• The historical drill sample recovery values are unknown. |
| **Logging** | • Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.
• The total length and percentage of the relevant intersections logged. | • Drill core was logged by a qualified geologist on paper log sheets and then captured into a pre-validated Excel™ spreadsheet. The core was logged for geology and geotechnical properties (RQD). A complete copy of the data is held by NTI and the MSA Group
• The entirety of all drillholes were logged for geological, mineralogical and geotechnical data.
• All core was logged, and logging was by qualitative (lithology) and quantitative (RQD) methods. All core was also photographed both in dry and wet states, with the photographs being captured in the database.
• The historical logging of geological data from the RC chips was provided in an excel spreadsheet and on section plans provided to MSA by NTI. The logging is lithological and based on the dominant minerals in the percussion chips. |
<table>
<thead>
<tr>
<th>Criteria</th>
<th>JORC Code explanation</th>
<th>Commentary</th>
</tr>
</thead>
</table>
| Sub-sampling techniques and sample preparation | • If core, whether cut or sawn and whether quarter, half or all core taken.
• If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
• For all sample types, the nature, quality and appropriateness of the sample preparation technique.
• Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
• Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.
• Whether sample sizes are appropriate to the grain size of the material being sampled. | • Cores were cut longitudinally in half, and half-core samples of a nominal 1 m length were submitted for assay. The submitted half-core samples typically had a mass of 3 – 4 kg.
• The sample preparation for drill core samples incorporates standard industry practice. The half-core samples were couriered to ALS’s Swakopmund preparation facility for crushing and milling.
• The entire sample was crushed.
• The crushed sample was split to obtain a sub-sample.
• The sub-sample was pulverised and split using a riffle splitter. A split was retained as reference and the other half was dispatched to the laboratory.
• A batch of coarse crush duplicates was prepared by ALS in Vancouver and the reproducibility of the duplicate results was found to be satisfactory, demonstrating that the sample preparation process is suitable.
• Standard sub-sampling procedures are utilised by ALS Swakopmund and at all stages of sample preparation such that each sub-sample split is representative of the whole it was derived from.
• MSA considers the sub-sampling and preparation techniques described to be reasonable but did not witness the work taking place.
• The historical sub-sampling techniques are unknown. |
Quality of assay data and laboratory tests

• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
• Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.

The pulps produced by ALS Swakopmund were couriered to Canada and analysed by ALS Laboratories in Vancouver using a sodium peroxide fusion of a 5 g charge followed by digestion of the prill using dilute hydrochloric acid thence determination by AES or MS, i.e. methods ME-ICP89L. Samples from the drilling completed in 2018 were assayed for a suite of 52 elements including Li, Sn, Ta and Nb.
• Peroxide fusion results in the complete digestion of the sample into a molten flux. As fusion digestions are more aggressive than acid digestion methods, they are suitable for many refractory, difficult-to-dissolve minerals such as chromite, ilmenite, spinel, cassiterite and minerals of the tantalum-niobium (coltan) solid solution series. They also provide a more-complete digestion of some silicate mineral species and are considered to provide the most reliable determinations of lithium and tantalum mineralisation.
• Geophysical instruments were not used in assessing the mineralisation.
• For the drilling, NTI incorporated standard QAQC procedures to monitor the precision, accuracy and general reliability of all assay results from assays of drilling samples. As part of NTI’s sampling protocol, Certified Reference Materials (CRMs), blank and duplicate samples were inserted into the sampling stream. A blank or CRM sample was inserted at a rate of one in ten field samples.
• The laboratory (ALS Vancouver) incorporated its own internal QAQC procedures to monitor its assay results prior to release of results to NTI.
• The AMIS CRMs used are AMIS0339 which has a certified average grade of 333 ppm Ta and 2.19% Li and AMIS341, which has a certified average grade of 740 ppm Ta and 5,041 ppm Li.
• The Ta assays by ALS for AMIS0341 were 8% less than the accepted CRM mean and outside the two standard deviations (SDs) of the accepted mean. The Ta values for AMIS0339 fall within the certified 2xSD but below the certified average. The lab was notified of the issue and asked to repeat the analyses. The Ta results for AMIS0339 of the repeat analyses fell within the two standard deviations of the accepted mean and the batch was accepted.
• The Competent Person is satisfied that the results of the QAQC are acceptable and that the assay data from ALS is suitable for reporting of the exploration results. However, there is potential that the Ta assays may be slightly under-reported.
• The blank silica chips CRM was sourced from AMIS (AMIS0439) and showed no significant contamination.
• There is no information relating to the assay data and laboratory tests for the historical data.
<table>
<thead>
<tr>
<th>Criteria</th>
<th>JORC Code explanation</th>
<th>Commentary</th>
</tr>
</thead>
</table>
| Verification of sampling and assaying | • The verification of significant intersections by either independent or alternative company personnel.
 • The use of twinned holes.
 • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
 • Discuss any adjustment to assay data. | • MSA observed the mineralisation in cores and in the outcrop on surface, although no check assaying was completed by MSA.
• Channel samples were taken within a few metres of an historical drillhole intersection and the tantalum grades and mineralisation trends compared well.
• The samples were taken by NTI’s senior geologist and the channel sample locations were observed by MSA
• All hardcopies are kept on site at NTI’s offices at Tantalite Valley.
• Logging and assay data were captured electronically in a Microsoft Excel™ spreadsheet
• All assay results were reported as Li (ppm) and Ta(ppm) by the laboratory.
• A statistical bias test was completed that indicated that the Ta assays of the historical data are overall unbiased with respect to the recent data. |
| Location of data points | • Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.
 • Specification of the grid system used.
 • Quality and adequacy of topographic control. | • The drillhole collars have been located by a registered surveyor using a digital global positioning system (DGPS).
• Coordinates are relative to WGS 84 UTM Zone 34S.
• Survey collars of the historical drillhole collars was using an obsolete survey system (Schwarzeck LO 19/21). The collar coordinates were changed to WGS 84 UTM Zone 34S by a transformation based on collars located in the field by MSA. |
| Data spacing and distribution | • Data spacing for reporting of Exploration Results.
 • Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
 • Whether sample compositing has been applied. | • The NTI drillholes are between 20 m and 46 m apart over the drilled area of the Purple Haze pegmatite.
• Two, 5 m long channels were cut into the sidewalls of the historical excavation at the base of the slope.
• Historical drillholes were drilled in the dry riverbed at the base of the slope and were spaced 10 m apart. Towards the southwest the drillholes are 25 m apart.
• The close spaced drilling established geological continuity to a moderate high degree of confidence. The wider spaced drilling was sufficient to delineate areas at lower confidence, however close spaced drilling is required in these types of deposits to identify the high-grade zones. |
<table>
<thead>
<tr>
<th>Criteria</th>
<th>JORC Code explanation</th>
<th>Commentary</th>
</tr>
</thead>
</table>
| Orientation of data in relation to geological structure | • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.
• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | • The drillholes are vertically orientated to intersect the pegmatites at approximately 60°. One hole was drilled at an angle of 65° to the northwest and intersect the pegmatite at an angle of approximately 85°.
• All channel sampling was in vertically orientated channels.
• No material sampling bias exists due to drilling direction. |
| Sample security | • The measures taken to ensure sample security. | • All samples were placed in plastic bags and sealed with staples
• Samples were transported by NTI employees or handed over to the courier service for transport to Swakopmund.
• The sample register was electronically supplied to ALS which issued a reconciliation of each sample batch, actual received vs documented dispatch.
• The ALS Swakopmund preparation facility supervises the sample preparation. Prepared pulps are sealed in boxes and transported by air to ALS Vancouver.
• The samples rejects are stored at NTI's offices in Windhoek |
| Audits or reviews | • The results of any audits or reviews of sampling techniques and data. | • The sampling techniques were reviewed by the Mr Cronwright during the site visit.
• The Competent Person considers that the exploration work conducted by NTI was carried out using appropriate techniques for the style of mineralisation.
• No information on reviews of the historical data are available. |
Section 2 Reporting of Exploration Results

(Criteria listed in the previous section also apply to this section.)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>JORC Code explanation</th>
<th>Commentary</th>
</tr>
</thead>
</table>
| Mineral tenement and land tenure status | • Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.
• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | • Mining Licence 77 (ML 77) issued to Tameka Shelf Company Four (Pty) Ltd.
• The Ministry of Environment and Tourism has granted an environmental clearance certificate to the Tantalite Valley Mine Project on ML-77 – Phase 1 (October 2016)
• The mine is located in an arid area of southwest of Namibia and the land is used as grazing for sheep and game farming. |
| Exploration done by other parties | • Acknowledgment and appraisal of exploration by other parties. | • Work completed by Southern Sphere identified a number of pegmatites in the area. The samples were not assayed for lithium. |
| Geology | • Deposit type, geological setting and style of mineralisation. | • The tantalum and lithium mineralisation is hosted in LCT-type pegmatites which are hosted in meta-mafic rocks of the meso-Proterozoic Kakamas and Archean Terranes of Namaqua Metamorphic Province. The Purple Haze Pegmatite occurs on the property and is currently mined by NTI for tantalite. |
| Drill hole Information | • A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:
 o easting and northing of the drill hole collar
 o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar
 o dip and azimuth of the hole
 o down hole length and interception depth
 o hole length.
• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | • Exploration results not being reported. |
| Data aggregation methods | • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.
• Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
• The assumptions used for any reporting of metal equivalent values should be clearly stated. | • Exploration Results not being reported. |
<table>
<thead>
<tr>
<th>Criteria</th>
<th>JORC Code explanation</th>
<th>Commentary</th>
</tr>
</thead>
</table>
| Relationship between mineralisation widths and intercept lengths | • These relationships are particularly important in the reporting of Exploration Results.
• If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.
• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. ‘down hole length, true width not known’). | • The majority of samples were taken at 1 m lengths.
• There is no relationship between sample length and grade.
• The geometry of the mineralisation is reasonably well understood however the pegmatite is not of uniform thickness nor orientation. Given the average dip of the pegmatite (32°) and vertical drilling the correction from drilled length to true thickness is 83%. |
| Diagrams | • Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | • A plan showing the recent and historical drillhole collars is included in the main body of this document. |
| Balanced reporting | • Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | • Exploration Results not being reported. |
| Other substantive exploration data | • Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | • Historical mining and historical exploration excavations are evident.
• A tantalum concentrate is being produced on-site at a jig and shaking table plant processing mineralisation from the nearby Homestead Mine. |
| Further work | • The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).
• Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | • The Purple Haze pegmatite has only been sampled in a limited area, The topography consists of steep sided hills and drilling access is challenging. Additions to the Mineral Resource down dip of the area demarcated in Figure 2 are possible once the steep sided areas are accessed for drilling.
• There is an ongoing exploration drilling programme in order to delineate mineralisation in and the extents of Homestead, White City and Purple Haze Pegmatites and other pegmatites on the property. |
Database integrity

- Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.
- Data validation procedures used.

- MSA visually checked the data captured in the spreadsheets against the hard copy records.
- The current NTI exploration programme uses a validated logging and sampling excel spreadsheet. For example, dropdown definitions for the characterisation of core are utilised to ensure consistent data collection. These excel spreadsheets are then imported into Maxwell Datashed Logchief, where validation queries are run on the exploration database.
- The validation process consisted of:
 - Examining the sample assay, collar survey and geology data to ensure that the data were complete for all drillholes,
 - Examining of data against the topographical surface,
 - examining the de-surveyed data in three dimensions to check for spatial errors,
 - examining the assay data to ascertain whether they were within expected ranges,
 - checks for “From-To” errors, to ensure that the sample data did not overlap one another or that there were no unexplained gaps between samples,
 - statistical checks to validate the generations of data.

Site visits

- Comment on any site visits undertaken by the Competent Person and the outcome of those visits.
- If no site visits have been undertaken indicate why this is the case.

- A visit was undertaken by Jeremy Witley (CP) from 23 to 25 June 2017 in order to review the historical database, observe the mineralisation in the outcrops and mine workings and plan an initial exploration programme.
- Michael Cronwright (former Principal Consultant at MSA) conducted a site visit to the Project from 4 to 11 April 2019. During the site visit, drillhole cores from several holes were inspected in the Tantalite Valley core yard and the pegmatites were examined in mine workings and outcrops.

Geological interpretation

- Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.
- Nature of the data used and of any assumptions made.
- The effect, if any, of alternative interpretations on Mineral Resource estimation.

- The confidence in the geological interpretation of the Pegmatite is considered good where the data are closely spaced. The constructed grade envelopes were informed by closely spaced historical drilling, recent drillholes and channel samples.
- The drillholes are mostly drilled along a dry river valley, sub-parallel to the strike of the deposit. This leads to poor understanding of the
<table>
<thead>
<tr>
<th>Criteria</th>
<th>JORC Code explanation</th>
<th>Commentary</th>
</tr>
</thead>
</table>
| | *estimation.*
 • The factors affecting continuity both of grade and geology. | geology down dip however; the pegmatite is well exposed on the up dip slope.
 • Percussion and diamond drilling complimented by geological mapping and channel sampling was used to construct the geological models and grade envelopes.
 • The grade envelopes for lithium and tantalum were based on thresholds of 80 ppm Ta and 300 ppm Li, respectively. These were constructed within the bounds of the pegmatite.
 • No alternative interpretations are likely.
 • The pegmatite was intersected in drillhole core and are clearly discernible.
 • Slight undulation typically associated with pegmatites occur.
 • The high-grade zones terminate sharply, and closely spaced drilling is required to model their extents with confidence. | |
| **Dimensions** | • The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. | The area defined pegmatite extends for approximately 220 m in the strike direction and for approximately 70 m in the dip direction.
 • The Mineral Resource is between 1 m and 8 m thick.
 • The majority of the Mineral Resource is near or at surface having been exposed in the dip slope before dipping into the steep hillside to the south west. | |
| **Estimation and modelling techniques** | • The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.
 • The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.
 • The assumptions made regarding recovery of by-products.
 • Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).
 • In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.
 • Any assumptions behind modelling of selective mining units.
 • Any assumptions about correlation between variables.
 • Description of how the geological interpretation was used to control the resource estimates. | Block model estimates were completed using Datamine Studio RM.
 o 10 mX by 10 mY by 2 mRL block models.
 o The estimates were completed using Inverse Distance Squared.
 o A search distance of 40 mX by 40 mY by 6 mRL was used to source between 8 and 12 one metre composites for estimation. Searches were expanded one and a half and ten times to estimate all the model cells.
 • Density data were available but not for all drillholes. The NTI drillhole samples and channel samples had density measurements. The historical HS series do not have density measurements.
 • Lithium was estimated as a potential bi product
 • No deleterious elements were estimated.
 • 10 mX by 10 mY by 2 mRL block models in relation to drillholes generally between 10 m and 40 m apart.
 • No selective mining units were estimated.
 • Search ellipses aligned with dip and strike of pegmatite. Estimates used hard boundaries between domains. Dynamic anisotropy was used during estimation that ensures that the estimation search ellipse follows the modelled mineralisation orientation. | |
<table>
<thead>
<tr>
<th>Criteria</th>
<th>JORC Code explanation</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>•</td>
<td>Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of</td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>model data to drill hole data, and use of reconciliation data if available.</td>
<td>• One sample composite with extreme grade (4,733 ppm Ta ppm) was top-capped to 3,000 ppm Ta to ensure this composite did not disproportionately impact on the estimates.</td>
</tr>
<tr>
<td>•</td>
<td></td>
<td>• The model was validated by visual examination, swath plots and global averages of model versus the data.</td>
</tr>
<tr>
<td>Moisture</td>
<td>• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.</td>
<td>• Tonnages were estimated on a dry basis.</td>
</tr>
<tr>
<td>Cut-off parameters</td>
<td>• The basis of the adopted cut-off grade(s) or quality parameters applied.</td>
<td>• The construction of the tantalum grade shell was based on a threshold of 80 ppm Ta. The lithium mineralised envelope was constructed based on a threshold of 300 ppm Li.</td>
</tr>
<tr>
<td>Mining factors or</td>
<td>• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution.</td>
<td>• No extensive mining has taken place at Purple Haze except for small quarries on the hill, where the pegmatite outcrops. These quarries have been depleted in the reported Mineral Resource.</td>
</tr>
<tr>
<td>assumptions</td>
<td>It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining</td>
<td>• This Mineral Resource is amenable to mine using open pit methods on and close to the dip-slope. Mining south west of the dry river valley will need to be by underground methods due to it dipping beneath a hill.</td>
</tr>
<tr>
<td></td>
<td>methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where</td>
<td></td>
</tr>
<tr>
<td></td>
<td>this is the case, this should be reported with an explanation of the basis of the mining assumptions made.</td>
<td></td>
</tr>
<tr>
<td>Metallurgical factors or</td>
<td>• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining</td>
<td>• A tantalum concentrate from mineralisation at the nearby Homestead Mine is being produced on-site at a jig and shaking table plant. MSA has no reason to doubt that the same plant could be used for the tantalite in the Purple Haze deposit.</td>
</tr>
<tr>
<td>assumptions</td>
<td>reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding</td>
<td>• Production of a saleable lepidolite concentrate has not been demonstrated by detailed test-work.</td>
</tr>
<tr>
<td></td>
<td>metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>this should be reported with an explanation of the basis of the metallurgical assumptions made.</td>
<td></td>
</tr>
<tr>
<td>Environmental factors or</td>
<td>• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining</td>
<td>• The CP is not aware of any environmental impediments.</td>
</tr>
<tr>
<td>assumptions</td>
<td>reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this</td>
<td></td>
</tr>
<tr>
<td></td>
<td>should be reported with an explanation of the environmental assumptions made.</td>
<td></td>
</tr>
<tr>
<td>Bulk density</td>
<td>• Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the</td>
<td>• 105 density measurements were completed within the pegmatite and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Criteria</td>
<td>JORC Code explanation</td>
<td>Commentary</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Criteria</td>
<td>frequency of the measurements, the nature, size and representativeness of the samples. • The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. • Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.</td>
<td>12 density measurements from the gabbro. • The density measurements were recorded on site with a digital scale, using the Archimedes Principle of weight in water versus weight in air. • The material is not porous and the method for determining density is appropriate. • Density was estimated into the block model using inverse distance squared.</td>
</tr>
<tr>
<td>Classification</td>
<td>• The basis for the classification of the Mineral Resources into varying confidence categories. • Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). • Whether the result appropriately reflects the Competent Person’s view of the deposit.</td>
<td>• The Mineral Resources were classified as Indicated when they occur within an area drilled to at least 20 m spacing. Indicated Mineral Resources were extended 10 m along strike and down-dip from the drillhole grid. Indicated Mineral Resource areas contained some NTI drilling that verified the historical data. • The Mineral Resources were classified as Inferred when they occur outside the area drilled to at least 20 m spacing, where only historical drilling was available or where no data were available in the up- or down-dip directions. Extrapolation was to a maximum of 25 m along strike and up- or down-dip. • The classification appropriately reflects the CP’s view of the deposit.</td>
</tr>
<tr>
<td>Audits or reviews</td>
<td>• The results of any audits or reviews of Mineral Resource estimates.</td>
<td>• No external audits or reviews have taken place.</td>
</tr>
<tr>
<td>Discussion of relative accuracy/ confidence</td>
<td>• Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. • The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. • These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.</td>
<td>• The Indicated Mineral Resources are of sufficient accuracy to allow for Life of Mine planning. • This pegmatite deposit is highly nuggety and wide data spacing may over- or under-evaluate the Mineral Resource. The classification has taken account of this. • Inferred Mineral Resource estimates should be considered global in nature. • There are no production records available for the small-scale historical mining at Purple Haze.</td>
</tr>
</tbody>
</table>